AKD4343-B
 AK4343 Evaluation board Rev. 0

GENERAL DESCRIPTION

The AKD4343-B is an evaluation board for the AK4343, Stereo DAC with built-in HP/RCV/SPK amplifier. The AKD4343-B has the interface with AKM's ADC evaluation boards. Therefore, it's easy to evaluate the AK4343. The AKD4343-B also has the digital audio interface and can achieve the interface with digital audio systems via opt-connector.

■ Ordering guide

AKD4343-B --- Evaluation board for AK4343
(Cable for connecting with printer port of IBM-AT compatible PC and control software are packed with this. This control software does not operate on Windows NT.)

FUNCTION

- 10pin Header for Direct Interface with AKM's ADC evaluation boards
- DIR with optical input
- 10pin Header for serial control mode
- Mini-jack for external Stereo Speaker
- On-board Stereo Class-D Speaker Amplifier (AK7830)

Figure 1. AKD4343-B Block Diagram

* Circuit diagram and PCB layout are attached at the end of this manual

Evaluation Board Manual

Operation sequence

1) Set up the power supply lines.

[VCC]	(red)	$=5.0 \mathrm{~V}$ (or 3.3 V$)$
[AGND]	(black)	$=0 \mathrm{~V}$
[DGND]	(black)	$=0 \mathrm{~V}$

Each supply line should be distributed from the power supply unit.
When the power is supplied to the AK4343 via the regulator, JP21 should be set to "REG" side and VCC should be 5.0 V . $<$ default $>$ (When the power is supplied from VCC jack to the AK4343 directly, JP21 should be set to "VCC" side and VCC should be 3.3 V .)
2) Set up the evaluation mode, jumper pins. (See the followings.)
3) Power on.

The AK4343 and AK4114 should be reset once bringing SW1 "L" upon power-up.
And the AK7830 should be reset once bringing SW2(SPK_PDN) "L" upon power-up.

■ Evaluation mode

(1) Slave mode

(1-1) Evaluation of Playback block (HP, SPK, LOUT) using DIR of AK4114 < Default> (1-2) All interface signals including master clock are fed externally.

The AK4114's audio interface format is fixed to $\mathbf{L J}$ compatible.

(1-1) Evaluation of Playback block using DIR of AK4114

PORT1 (DIR) is used. Nothing should be connected to PORT3 (DSP).

The AK4114 operates at fs of 32 kHz or more. If the fs is slower than 32 kHz , any other evaluation mode without using DIR should be used.
(1-2) All interface signals including master clock are fed externally. PORT3 (DSP) is used. Nothing should be connected to PORT1 (DIR).

(2) Master mode
(2-1) Master clock is fed externally

(2-1) Master clock is fed externally

PORT3 (DSP) is used and MCLK is fed from PORT3. Nothing should be connected to PORT1 (DIR). It is possible to evaluate at various sampling frequencies using built-in AK4343's PLL.

■ Other jumper pins set up

1. JP1 (GND) : Connection between AGND and DGND.

OPEN : Both grounds are separated on board.
SHORT : Both grounds are connected on board. $<$ Default $>$
2. JP4,JP5,JP12 : Select speaker type.

Speaker Type	JP4	JP5	JP12
Dynamic, 400 mW	Short	Short	Dynamic
<Default \gg			
Dynamic, 1.2 W	Short	Short	Piezo
Pizeo	Open	Open	Piezo

3. JP16,JP17: Select Pin \#5,28

Pin \#5	Pin \#28	JP16	JP17	AIN3 bit
VCOC	MIN	VCOC	Open	0
RIN3	LIN3	RIN3	Short	1

<Default>
4. JP18,JP19,JP20 : Select the input from MIN/LIN3/RIN3.

Pin \#26	Pin \#27	JP18	JP19	JP20	RCV bit
ROUT	LOUT	Open	Open	Short	0
RCN	RCP	Short	Short	Open	1

5. JP22 : Select the Power Booster of AK7830.

VCC : Power Booster ON
GND: Power Booster Off<Default>

- The function of the toggle SW
[SW1] (PDN): Power down of AK4343 and AK4114. Keep "H" during normal operation. [SW2] (SPK_PDN): Power down of AK7830. Keep "H" during normal operation.

■ Indication for LED

[LED1] (ERF): Monitor INT0 pin of the AK4114. LED turns on when some error has occurred to AK4114.

Serial Control

The AK4343 can be controlled via the printer port (parallel port) of IBM-AT compatible PC. Connect PORT4 (CTRL) with PC by 10 wire flat cable packed with the AKD4343. When $\mathrm{I}^{2} \mathrm{C}$ bus mode is used, PORT4 should be directly connected to the $I^{2} \mathrm{C}$ bus on the system. JP13,14 and 15 should be set to $\mathrm{I}^{2} \mathrm{C}$ bus mode to control the AK7830.

Figure 2. Connect of 10 wire flat cable
(1) 3-wire Serial Control Mode <Default>

The jumper pins should be set to the following.

(2) $I^{2} C$-bus Control Mode

The jumper pins should be set to the following.
(2-1) In case of using CAD0=0 (device address bits).

(2-2) In case of using CAD $0=1$ (device address bits).

Analog Input/Output Circuits

(1) Input Circuits

1. MIN/LIN3/RIN3 Input Circuit

Figure 3. MIN/LIN3/RIN3 Input Circuit
2. LINE1 Input Circuit

Figure 4. LIN1/RIN1 Input Circuit
3. LINE2 Input Circuit

Figure 5. LIN2/RIN2 Input Circuit
(2) Output Circuits

1. Headphone-amp Output Circuit

Figure 6. Headphone-amp Output Circuit
2. STEREO LINE Output Circuit

Figure 7. STEREO LINE Output Circuit

3. SPEAKER Output Circuit

Figure 8. SPEAKER Output Circuit
4. External SPEAKER-Amp(AK7830) Output Circuit

Figure 9. External SPEAKER-Amp(AK7830) Output Circuit

* AKM assumes no responsibility for the trouble when using the above circuit examples.

Control Software Manual

■ Set-up of evaluation board and control software

1. Set up the AKD4343-B according to previous term.
2. Connect IBM-AT compatible PC with AKD4343-B by 10-line type flat cable (packed with AKD4343-B). Take care of the direction of 10pin header. (Please install the driver in the CD-ROM when this control software is used on Windows 2000/XP. Please refer "Installation Manual of Control Software Driver by AKM device control software". In case of Windows $95 / 98 / \mathrm{ME}$, this installation is not needed. This control software does not operate on Windows NT.)
3. Insert the CD-ROM labeled "AKD4343-B Evaluation Kit" into the CD-ROM drive.
4. Access the CD-ROM drive and double-click the icon of "AKD4343.exe" to set up the control program. When control the AK7830 with the serial mode, double-click the icon of "akd7830.exe" to set up the control program.
5. Then please evaluate according to the follows.

- Operation flow

Keep the following flow.

1. Set up the control program according to explanation above.
2. Click "Port Reset" button.
3. Click "Write default" button

■ Explanation of each buttons

1. [Port Reset] : Set up the USB interface board (AKDUSBIF-A) when using the board.
2. [Write default]: Initialize the register of the AK4343.
3. [All Write]: Write all registers that is currently displayed.
4. [Function1]: Dialog to write data by keyboard operation.
5. [Function2]: Dialog to write data by keyboard operation.
6. [Function3]: The sequence of register setting can be set and executed.
7. [Function4]: The sequence that is created on [Function3] can be assigned to buttons and executed.
8. [Function5]: The register setting that is created by [SAVE] function on main window can be assigned to buttons and executed.
9. [SAVE]: Save the current register setting.
10. [OPEN]: Write the saved values to all register.
11. [Write]: Dialog to write data by mouse operation.

■ Indication of data

Input data is indicated on the register map. Red letter indicates " H " or " 1 " and blue one indicates " L " or " 0 ". Blank is the part that is not defined in the datasheet.

■ Explanation of each dialog

1. [Write Dialog]: Dialog to write data by mouse operation

There are dialogs corresponding to each register.
Click the [Write] button corresponding to each register to set up the dialog. If you check the check box, data becomes "H" or " 1 ". If not, " L " or " 0 ".

If you want to write the input data to the AK4343, click [OK] button. If not, click [Cancel] button.
2. [Function1 Dialog]: Dialog to write data by keyboard operation

Address Box: Input registers address in 2 figures of hexadecimal.
Data Box: Input registers data in 2 figures of hexadecimal.
If you want to write the input data to the AK4343, click [OK] button. If not, click [Cancel] button.

3. [Function2 Dialog] : Dialog to evaluate DATT

There are dialogs corresponding to register of $09 \mathrm{~h}, 0 \mathrm{Ah}, 0 \mathrm{Ch}$, and 0 Dh .
Address Box: Input registers address in 2 figures of hexadecimal.
Start Data Box: Input starts data in 2 figures of hexadecimal.
End Data Box: Input end data in 2 figures of hexadecimal.
Interval Box: Data is written to the AK4343 by this interval.
Step Box: Data changes by this step.
Mode Select Box:
If you check this check box, data reaches end data, and returns to start data.
[Example] Start Data $=00$, End Data $=09$ Data flow: 0001020304050607080909080706050403020100

If you do not check this check box, data reaches end data, but does not return to start data.
[Example] Start Data $=00$, End Data $=09$ Data flow: 00010203040506070809

If you want to write the input data to the AK4343, click [OK] button. If not, click [Cancel] button.

4. [SAVE] and [OPEN]

4-1. [SAVE]
All of current register setting values displayed on the main window are saved to the file. The extension of file name is "akr".
<Operation flow>
(1) Click [SAVE] Button.
(2) Set the file name and click [SAVE] Button. The extension of file name is "akr".

4-2. [OPEN]

The register setting values saved by [SAVE] are written to the AK4343. The file type is the same as [SAVE].
<Operation flow>
(1) Click [OPEN] Button.
(2) Select the file (*.akr) and Click [OPEN] Button.

5. [Function3 Dialog]

The sequence of register setting can be set and executed.
(1) Click [F3] Button.
(2) Set the control sequence.

Set the address, Data and Interval time. Set "-1" to the address of the step where the sequence should be paused.
(3) Click [START] button. Then this sequence is executed.

The sequence is paused at the step of Interval="-1". Click [START] button, the sequence restarts from the paused step.
This sequence can be saved and opened by [SAVE] and [OPEN] button on the Function3 window. The extension of file name is "aks".

Figure 10. Window of [F3]

6. [Function4 Dialog]

The sequence file (*.aks) saved by [Function3] can be listed up to 10 files, assigned to buttons and then executed. When [F4] button is clicked, the window as shown in Figure 10 opens.

Figure 11. [F4] window

6-1. [OPEN] buttons on left side and [START] buttons
(1) Click [OPEN] button and select the sequence file (*.aks) saved by [Function3].

The sequence file name is displayed as shown in Figure 11. (In case that the selected sequence file name is
"DAC_Stereo_ON.aks")

Figure 12. [F4] window(2)
(2) Click [START] button, then the sequence is executed.

6-2. [SAVE] and [OPEN] buttons on right side

[SAVE] : The name assign of sequence file displayed on [Function4] window can be saved to the file. The file name is "*.ak4".
[OPEN] : The name assign of sequence file(*.ak4) saved by [SAVE] is loaded.

6-3. Note
(1) This function doesn't support the pause function of sequence function.
(2) All files used by [SAVE] and [OPEN] function on right side need to be in the same folder.
(3) When the sequence is changed in [Function3], the sequence file (*.aks) should be loaded again in order to reflect the change.

7. [Function5 Dialog]

The register setting file(*.akr) saved by [SAVE] function on main window can be listed up to 10 files, assigned to buttons and then executed. When [F5] button is clicked, the window as shown in Figure 12 opens.

Figure 13. [F5] window

7-1. [OPEN] buttons on left side and [WRITE] button
(1) Click [OPEN] button and select the register setting file (*.akr).

The register setting file name is displayed as shown in Figure 13. (In case that the selected file name is "DAC_Output.akr")
(2) Click [WRITE] button, then the register setting is executed.

Figure 14. [F5] windows(2)

7-2. [SAVE] and [OPEN] buttons on right side

[SAVE] : The name assign of register setting file displayed on [Function5] window can be saved to the file. The file name is "*.ak5".
[OPEN] : The name assign of register setting file(*.ak5) saved by [SAVE] is loaded.

7-3. Note

(1) All files used by [SAVE] and [OPEN] function on right side need to be in the same folder.
(2) When the register setting is changed by [SAVE] Button on the main window, the register setting file (*.akr) should be loaded again in order to reflect the change.

MEASUREMENT RESULTS

1. EXT mode (slave mode)

[Measurement condition]

- Measurement unit: Audio Precision, System two Cascade
- EXT Slave Mode
- BICK: 64fs
- Bit: 16bit
- Measurement Frequency: 20Hz ~20kH
- Power Supply: AVDD=DVDD=HVDD=3.3V
- Temperature: Room
- Input Frequency: 1 kHz
- Sampling Frequency: 44.1 kHz
[Measurement Results]
DAC (LOUT/ROUT) characteristics $\left(\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega\right.$, DAC \rightarrow LOUT/ROUT)

		$\mathrm{L}[\mathrm{dB}]$	$\mathrm{R}[\mathrm{dB}]$
$\mathrm{S} /(\mathrm{N}+\mathrm{D})$	20kHzLPF (-3dB)	89.7	89.7
$\mathrm{~S} / \mathrm{N}$	20kHzLPF + A-weighted	94.6	94.6

2. PLOT DATA

2-1 DAC (DAC \rightarrow LOUT/ROUT)

Figure 15. THD +N vs. Input Level

DAC -> LINEOUT THD+N vs Input Frequency
fs $=44.1 \mathrm{kHz}, \mathrm{fin}=1 \mathrm{kHz}$

Figure 16.THD+N vs. Input Frequency

Figure 17. Linearity

Figure 18. Frequency Response
$\mathrm{fs}=44.1 \mathrm{kHz}$, fin $=1 \mathrm{kHz}, 0 \mathrm{~dB}$ Input

Figure 19. FFT Plot (Input level= 0dBFs)

AKM

> DAC --> Lineout FFT
$\mathrm{fs}=44.1 \mathrm{kHz}, \mathrm{fin}=1 \mathrm{kHz},-60 \mathrm{~dB}$ Input

Figure 20. FFT Plot (Input level $=-60 \mathrm{dBFs})$
$\mathrm{fs}=44.1 \mathrm{kHz}$, fin=1kHz, No Signal

Figure 21. FFT Plot (No signal)

Figure 22. Crosstalk Plot

Revision History

Date (YY/MM/DD)	Manual Revision	Board Revision	Reason	Contents
$06 / 04 / 12$	KM083800	0	First Edition	

IMPORTANT NOTICE

- These products and their specifications are subject to change without notice. Before considering any use or application, consult the Asahi Kasei Microsystems Co., Ltd. (AKM) sales office or authorized distributor concerning their current status.
- AKM assumes no liability for infringement of any patent, intellectual property, or other right in the application or use of any information contained herein.
- Any export of these products, or devices or systems containing them, may require an export license or other official approval under the law and regulations of the country of export pertaining to customs and tariffs, currency exchange, or strategic materials.
- AKM products are neither intended nor authorized for use as critical components in any safety, life support, or other hazard related device or system, and AKM assumes no responsibility relating to any such use, except with the express written consent of the Representative Director of AKM. As used here:
(a) A hazard related device or system is one designed or intended for life support or maintenance of safety or for applications in medicine, aerospace, nuclear energy, or other fields, in which its failure to function or perform may reasonably be expected to result in loss of life or in significant injury or damage to person or property.
(b) A critical component is one whose failure to function or perform may reasonably be expected to result, whether directly or indirectly, in the loss of the safety or effectiveness of the device or system containing it, and which must therefore meet very high standards of performance and reliability.
- It is the responsibility of the buyer or distributor of an AKM product who distributes, disposes of, or otherwise places the product with a third party to notify that party in advance of the above content and conditions, and the buyer or distributor agrees to assume any and all responsibility and liability for and hold AKM harmless from any and all claims arising from the use of said product in the absence of such notification.

AKD4643-B LI SILK

AKD4643-B L1

